Table 7-3: Soil Results for Metals and Asbestos Against Residential NEPM 2013 Guidelines (Units mg/kg unless otherwise specified)

				Motale						Achectos	
				Metais					-	ASDESIOS	1114
SAC	Arsenic	Cadmium	Chromium (VI)	Copper	Lead	Nickel	Zinc	Mercury	Bonded ACM	FA and AF	All Forms of Asbestos
HILA	100	20	100	6,000	300	400	7,400	40	0.01 % w/w	0.001% w/w	No visible
HIL A Market Gardens (#)	100	20	100	1,000	300	400	7,000	15	- A	_	•
EIL (####)	100		580	220	1,100	220	630		,	L	
LOR	5	1	2	5	5	2	S	0.1	1	1	ı
Sample event ESP 2012											
54	1	,	ł	-	ı	١.		5	1	ī	1
Sample event ESP 2016											
S-1	3.3	< 0.4	I	17	17	13	53	< 0.05	1	i i	ſ
S-2	ß	< 0.4	•	21	14	24	58	< 0.05	,	,	ŧ
S-3	9.8	< 0.4	1	16	27	8.2	40	< 0.05	ı	1	r
Sample event BE 2017											
A4-DISC1-SURF	6	<1	22	25	28	œ	88	< 0.1	•	1	E E
A4-DISC2-SURF	80	<1	20	22	23	6	64	< 0.1	1	1	1
A4-DISC3-SURF	7	<1	21	18	20	6	50	< 0.1	1		-
A4-DISC4-SURF	6	<1	21	27	19	œ	48	< 0.1	1		
A4-DISC5-SURF	6	<1	23	32	21	80	87	< 0.1	1	ı	***
A4-DISC6-SURF	8	<1	22	29	23	10	94	< 0.1	1	ı	
A4-DISC7-SURF	12	<1	22	27	20	7	59	< 0.1	•		š
A4-DISC8-SURF	11	<1	20	29	22	Ø	78	< 0.1	,		-
A4-DISC9-SURF	6	<1	21	24	18	10	59	< 0.1	,	*	
A4-DISC10-SURF	6	<1	19	22	19	11	09	< 0.1	1	ŧ	
STOCK 1		•	**	1	1	i			< 0.01	< 0.001	No
STOCK 2	,		ŗ	1		ŧ	٠	-	0.44	< 0.001	Yes
STOCK 3	1	,		1	ŧ	*	-	f	< 0.01	0.022	Yes

(#) NSW DEC 2005 Guidelines for assessing former Orchards and Market Gardens

(##) NSW DEC 2005 Guidelines for assessing former Orchards and Market Gardens with composite adjustment

(###) Clay, 0 to < 1m

(####) Urban residential, aged contamination, 7 pH, CEC 15 cmolc/kg, low traffic

Table 7-2: Soil Results for Phenols, PAHs, TRH, and BTEX Against Industrial/Commercial NEPM 2013 Guidelines (Units mg/kg unless otherwise specified)

	Total Xylenes	-	-	NL	N	,	,	95	32	•	•	0.5		•	1		< 0.5	< 0.5
втех	Ethylbenzene	-	ı	NF	N		,	185	.62	-		0.5		1	,		< 0.5	< 0.5
BT	Toluene	-	_	N	N	ŧ	1	135	45		1	0.5		ı	4		< 0.5	< 0.5
	Benzene	-	_	4	1) •	•	95	32	-	-	0.2		,	;		< 0.5	< 0.5
	F1 (C6 - C10 minus BTEX)	-	_	1,000	333			215	72	1		10		< 20	< 20		< 0.2	< 0.2
	>C34 - C40 Fraction		_		-	8		6,600	2,200	10,000	3333	100		,	,		< 100	< 100
TRH	>C16 - C34 Fraction	_	-	1	•	4	-	2,500	833	5,000	1667	100		,	t		< 100	< 100
	>C10 - C16 Fraction	-	-	NL	NL	,	•	170	57	1,000	333	20		,	1		< 50	< 50
	C6 - C10 Fraction	-	-	310	103	ı	,	,	5	800	267	10		1	1		< 10	< 10
	Sum of PAHs	4,000	1,333	=	· C	ş	1	ı	,			0.5		-	-		< 0.5	< 0.5
	Benzo(a)pyrene TEQ (zero)	40	ET	-	1	,	,	ı	ı			0.5		-	,		< 0.5	< 0.5
PAH	Benzo(a)pyrene	-	-	-	•	1		1.4	0.6	1	1	0.5			1		< 0.5	< 0.5
	Naphthalene		- 1	NL	NL	370	123	ī	1	-		0.5		1	ı		< 0.5	< 0.5
Phenols	Pentachlorophenol	999	220	-		1	,	ţ	1	-		2		1	ı		<2	< 2
Phe	Phenol	240,000	80,000		_	370	123	ı	,	1		0.5	ont.)	1	•		< 0.5	< 0.5
	SAC	HILD	HIL D (adjusted)	HSL D (*)	HSL D (*) (adjusted)	EIL (**)	EIL (**) (adjusted)	ESL (***)	ESL (***) (adjusted)	Mgmt limits	Mgmt limits (adjusted)	LOR	Sample event ESP 2016 (cont.)	BH04-0.1	BH04-0.3	Sample event BE 2017	A1-COMP-SURF	AS-COMP-SURF

(*) Clay, 0 to < 1m

(**) Commercial/industrial, aged contamination, 6 pH, CEC 5 cmolc/kg, low traffic

(***) Commercial/industrial, Fine

^ CCME Canadian Environmental Quality Guidelines Summary Table - Soil Quality Guidelines

Bethel Mar Thoma Church, Sydney Inc. & Fairfield City Council Contamination Report Addendum to Stage 1 Preliminary Site Investigation

Table 7-2: Soil Results for Phenols, PAHs, TRH, and BTEX Against Industrial/Commercial NEPM 2013 Guidelines (Units mg/kg unless otherwise specified)

Т		P15	u ele	Zei,	Sept.	Т	Т	Т	T		- T	7 · I	\neg	$\neg r$	Т	Т	\neg	Т	Т	Т	Т	Т	Т	\neg	
	Total Xylenes	100 mg/s/ 100 mg		٦N	NL	1			95	32			0.5			-	< 0.5			< 0.3		< 0.3	,	•	•
×	Ethylbenzene	T.		NL	NI	ſ		,	185	62	12.000	•	0.5			I	< 0.5	t		< 0.1		< 0.1	•	,	1
BTEX	Toluene	10 m		NL	NI			,	135	45		1	0.5			1	< 0.5	3		< 0.1	,	< 0.1	•		
	Benzene			4		,		3	95	32			0.2		1	r	< 0.2	r		< 0.1	-	< 0.1	,	1	
	F1 (C6 - C10 minus BTEX)	**		1,000	333	ī		,	215	72			10					,		< 20		< 20	1	1	
	>C34 - C40 Fraction					1		+	6,600	2,200	10,000	3333	100			< 100	< 100	1		1	-	***	***************************************	ı	
TRH	>C16 - C34 Fraction	1				,			2,500	833	5,000	1667	100		*	< 100	< 100	1		1		•	1	I	
1	>C10 - C16 Fraction			N.	Z	ı		1	170	57	1,000	333	50		,	< 50	< 50				-	ı		-	
	C6 - C10 Fraction			310	103	ì		-	í	ı	800	267	10		1	< 10	< 10					1	ſ		1
	Sum of PAHs	4,000	1.333	A Company of the		,		•	1	,			0.5		,	< 0.5	0.2	2.4		,	1	1	;	1	1
	Benzo(a)pyrene TEQ (zero)	40	13			-		r	,	1	1		0.5		,	ī	,	-			,	ı		1	1
PAH	Benzo(a)pyrene	*						ı	1.4	0.6			0.5		-	< 0.5	< 0.1	0.2		1		1	1	ŧ	ı
	Naphthalene			IN	Z Z	370		123	ı	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.5			< 0.5	< 0.1	< 0.1		< 0.5		< 0.5		3	ι
lols	Pentachlorophenol	999	220			ı		1	1				2		1	< 0.2	,	,			,		1	ŧ	í
Phenols	Phenol	240.000	80.000	200/20		370		123	r	,			0.5		1	<1		-		ı		,	í	,	,
	C C C	ALI Die seine de la constant de la c	HII D (adiiicted)	TILL O (adjusted)	HSLD(*) (adjusted)	EL (**)		EIL (**) (adjusted)	ESL (***)	ESL (***) (adjusted)	Memtilimits	Mgmt limits (adjusted)	LOR	Sample event ESP 2012	\$22	S3	SS	S6	Sample event ESP 2016	BH01-0.2	BH01-0.5	BH02-0.2	BH02-0.5	BH03-0.1	BH03-0.4

Benbow Environmental Page: 20

Table 7-1: Soil Results for Metals, PCBs, OCPs, and OPPs Against Industrial/Commercial NEPM 2013 Guidelines (Units mg/kg unless otherwise specified)

Contamination Report Addendum to Stage 1 Preliminary Site Investigation

Bethel Mar Thoma Church, Sydney Inc. & Fairfield City Council

ddO	Chlorpyrifos	2,000	299	1	,	0.05				1	< 0.05		1	1			< 0.2	< 0.2	< 0.2	< 0.2		< 0.05	< 0.05
	Sum of Aldrin + Dieldrin	45	15	•	•	0.05	and the second s	< 0.05	1	,	< 0.05		1		1	ı	< 0.1	< 0.1	< 0.1	< 0.1		< 0.05	< 0.05
	Sum of DDD + DDE + DDT	3,600	1,200	640	213	0.05		0.08	,		< 0.05		1		ţ	,	< 0.05	90.0	< 0.05	< 0.05		0.08	0.41
	Methoxychlor	2,500	833	•		0.2		< 0.2	< 0.03		< 0.2		1	,	1	-	< 0.2	< 0.2	< 0.2	< 0.2		< 0.2	< 0.2
OCP	Endosulfan (sum)	2,000	667		**	0.05		< 0.05	< 0.03	1	< 0.05		ı	1	ı	1	< 0.1	< 0.1	< 0.1	< 0.1		< 0.05	< 0.05
ŏ	Endrin	100	33	1 1	1	0.05		< 0.05	< 0.03	,	< 0.05		ŧ	,	1	,	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05
	Total Chlordane (sum)	530	177			0.05		< 0.05		,	< 0.05		1	ŧ	ı	ţ	< 0.1	< 0.1	< 0.1	< 0.1		< 0.05	< 0.05
	Heptachlor	50	17	•	1	0.05		< 0.05	< 0.03	,	< 0.05		,	ı	,	ŧ	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05
	НСВ	80	27		•	0.05		< 0.05	< 0.03	'	< 0.05		•	ŧ	-	ł	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05
PCB	РСВ	7	2		1	0.1		ŧ	<0.1	,	1		1		,	ŧ	-	,	1	-		<0.1	<0.1
	Mercury	730	243	24	∞	0.1		< 0.1	< 0.1	,	< 0.1		60.0	< 0.05	0.15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		< 0.1	< 0.1
	Zinc	400,000	133,333	940	313	5		58	144	1	97		150	120	290	89	87	68	110	100		64	83
	Nickel	6,000	2,000	380	127	2		8	12	ŧ	10		13	13	18	13	7.1	12	9.1	9.4		10	18
Metals	Lead	1,500	500	1,800	009	5		20	31	,	25		97	61	79	35	17	26	21	18		22	35
M	Copper	240,000	80,000	320	107	5		20	37	,	33		33	29	20	25	28	25	38	25		29	34
	Chromium	3,600	1,200	320	107	2		,	<0.5	•	ı		,	ŧ	-	1		-	,	1		23	22
	Cadmium	006	300	22v	7	1		<1	< 1	1	<1		< 0.4	< 0.4	9.0	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4		<1	<1
	Arsenic	3,000	1,000	160	53	5	012	8	12	,	11	016	10	9.8	7.9	8	7.8	11	9.7	7.5	117	13	7
		HILD	HIL D (adjusted)	EIL (**)	EIL (**) (adjusted)	LOR	Sample event ESP 2012	52	53	55	S6	Sample event ESP 2016	BH01-0.2	BH01-0.5	ВН02-0.2	BH02-0.5	BH03-0.1	BH03-0.4	BH04-0.1	BH04-0.3	Sample event BE 2017	A1-COMP-SURF	A5-COMP-SURF

(*) Clay, 0 to <1m

(**) Commercial/industrial, aged contamination, 6 pH, CEC 5 cmolc/kg, low traffic

(***) Commercial/industrial, Fine

^ CCME Canadian Environmental Quality Guidelines Summary Table - Soil Quality Guidelines

Figure 7-1: Bonded Asbestos Found on the Soil Surface at Pit STOCK 2 on the Stockpile in Area 4

Figure 7-2: Building Waste Found in sampling point STOCK 3 on the Stockpile in Area 4

7. RESULTS AND DISCUSSION

The combined analytical results of the substances tested in the soil samples (for all three sampling events, by Benbow Environmental and ESP) are presented for the proposed commercial/industrial areas (Areas 1-2 and 5-6) in Table 7-1 (for metals, PCBs, OCPs, and OPPs) and Table 7-2 (for phenols, PAHs, TRH, and BTEX). Results for the proposed residential area (Area 4) are presented in Table 7-3 (for metals and asbestos) and Table 7-4 (for OCPs and OPPs). Results are compared to the adopted SAC, as discussed in the previous section. Tabulated results which are presented in bold are those above the Limit of Reporting (LOR), while results highlighted in red colour indicate values that exceed one or more assessment criteria. The sample analysis report (Certificate of Analysis) from ALS laboratories is provided in Attachment 6.

The results show the concentrations of all tested analytes, except asbestos, as being well below the adopted SAC; i.e. no exceedances were found for Metals, PCB, OCP, OPP, Phenols, PAH, TRH and BTEX. The calculations of the average 95% UCL concentrations for each analyte were undertaken using Procedure D, normal distribution, as outlined in the *Sample Design Guidelines* (NSW EPA, 1995). All calculated 95% UCL values were found to be well below the site assessment criteria. As a result of these findings, no further testing for the above mentioned analytes is considered warranted.

However, asbestos concentrations in exceedance of the NEPM HIL A SAC was detected by the laboratory in two of the three soil samples from the fill stockpile, in the proposed residential area, Area 4 (Table 7-3).

Two pieces of suspected bonded asbestos (ACM) of approximately 10 cm x 5 cm were found in the immediate sub-surface of the stockpile material at sampling point STOCK 2, (Figure 7-1), which was confirmed to be bonded ACM by lab testing. No asbestos was visible in pit STOCK 3, however, lab results indicated the presence of fibrous asbestos (ACM in a degraded condition).

This indicates that the asbestos is most likely from building waste that has been either brought in with the fill or dumped in the soil stockpile at a later stage. Fragments of building waste, including brick and concrete ranging from 1 cm to 10 cm in diameter, were throughout sampling point STOCK 3 as shown in Figure 7-2, which supports this conclusion. No building waste was visible in pit STOCK 1 and no asbestos was detected by the lab in this sample, so asbestos contamination may be localised in hotspots throughout the stockpile. No other form of contamination was detected in the stockpile during previous sample testing by ESP.

During detailed sampling of Area 4, it was noted that the soil surface and soil samples taken from the sub-surface stratum, were free from any visible asbestos. Based on the site history and other collected samples, there is no reason to suspect of buried asbestos materials on site (excluding within the stockpile in Area 4). Additionally, none of the sample locations showed any olfactometry response to hydrocarbons or chemicals, and there was no evidence of soil discolouration caused by the potential presence of chemical wastes.

The SAC has also been adjusted for the assessment of composite samples, in accordance with NSW EPA (1995), Sampling Design Guidelines. The acceptable limit against which the samples results are to be compared were divided by the number of sub-samples making up the composite (three in this instance). The adjusted SAC are also presented in the results tables in Section 7, below their original value.

6. SITE ASSESSMENT CRITERIA

The analytical results from the laboratory testing have been assessed (as Tier 1 assessment) against the investigation and screening levels in Schedule B1 of NEPC (2013). These guidelines have been endorsed by the NSW EPA under the *Contaminated Land Management* (CLM) *Act*, 1997. Schedule B1, NEPC (2013) provides soil investigation and screening levels for commonly encountered contaminants which are applicable to four generic land use settings and include consideration of the soil type and the depth of contamination, where relevant. These soil investigation and screening levels are described as follows:

Health Investigation Level (HIL)

Health investigation levels (HILs) are generic assessment criteria designed to be used in the first stage of an assessment of potential risks to human health from chronic exposure to contaminants. HILs are generic to all soil types and generally apply to the top 3 m of soil.

Health Screening Level (HSL)

Health Screening Levels (HSLs) have been derived for BTEX, naphthalene and four carbon chain fractions, as adopted in NEPC (2013). HSLs have been calculated to account for depth (from below surface to >4 m), soil textures (sand, silt and clay) and the land use settings.

Ecological Investigation Level (EIL)

Ecological Investigation Levels (EILs) have been developed for selected metals and organic compounds and are applicable for assessing risk to terrestrial ecosystems. EILs depend on land use scenarios and specific soil physiochemical properties, such as pH, cation exchange capacity (CEC), iron and carbon content, etc. They generally apply to the top 2 m of soil.

Ecological Screening Level (ESL)

Ecological screening levels (ESLs) have been developed for selected petroleum hydrocarbon compounds and total petroleum hydrocarbon (TPH) fractions and are applicable for assessing risk to terrestrial ecosystems. ESLs broadly apply to coarse- and fine-grained soils and various land uses. They are generally applicable to the top 2 m of soil.

Management Limits

Petroleum hydrocarbon management limits ('management limits') are only applicable to petroleum hydrocarbon compounds. They are valid as screening levels following evaluation of human health and ecological risks, and risks to groundwater resources. Management limits apply to all soil depth, based on site-specific considerations for land use and soil type.

The following site-specific inputs have been applied for the selection of the appropriate investigation and screening levels:

- Land use scenario: Commercial/industrial (D) for Areas 1 & 5, Residential (A) for Area 4.
- Soil texture and grain size: Clay; Fine.
- Soil depth: 0 to <1 m.
- Age of contamination: Aged.
- Soil physicochemical properties: CEC 15 cmolc/kg; pH 7; Organic carbon content 30%.
- Traffic volume: Low.

The adopted Site Assessment Criteria (SAC), based on site-specific inputs, are included in the tables presenting the analytical results (Table 7-1, Table 7-2, Table 7-3 and Table 7-4).

Table 5-1: QA/QC Data Evaluation

Data Quality Objectives	Frequency	Achieved?	Data Quality Indicator Achieved?	
Precision				
Blind field duplicates	5% of samples	Yes	<50% RPD Yes	
Laboratory duplicates	10% of samples	Yes	<50% RPD Yes	
Limit of reporting (LOR) appropriate	All Samples	Yes	No errors/inconsistencies in LOR	
Accuracy				
Laboratory Control Spikes (LCS)	5% of samples	Yes	Within LCS recovery limits	
Matrix Spikes (MS)	5% of samples	Yes	Within MS recovery limits	
Trip Blanks (TB)	1 per cooler	No	Below LOR	
Trip Spikes (TS)	1 per cooler	No	Within acceptable recovery limits N/A	
Representativeness				
Method Blanks (MB)	5% of samples	Yes	Variance between sample results and LOR	
Sampling appropriate for media and analytes	All Samples	Yes	No errors in selection of media/analytes	
Sample analysed within holding times	All Samples	Yes	General metals: 6 months - Others: 14 days	
Comparability				
Standard operating procedures for sample collection and handling	All Samples	Yes	No errors in compliance with procedures	
Standard analytical methods for analytes	All Samples	Yes	No errors in selection of analytical methods	
Consistent field conditions and lab analysis	All Samples	Yes	No variations reported Yes	***************************************
Completeness				
Soil description and COC properly completed	All Samples	Yes	No errors in COC	***************************************
Appropriate documentation	All Samples	Yes	No errors in documentation Yes	
Satisfactory QC sample results	All QA/QC Samples	Yes	No reported outliers in QC report	
Data from critical samples is considered valid	Critical samples	Yes	Consistency in results from critical samples	

5. QA/QC EVALUATION

The Quality Assurance and Quality Control (QA/QC) applied to this project was evaluated in accordance with AS 4482.1-2005 in regard to the following parameters:

- Precision measures the reproducibility of measurements under a given set of conditions. The precision of the laboratory data and sampling techniques is assessed by calculating the Relative Percent Difference (RPD) of duplicate samples.
- Accuracy measures the bias in a measurement system. The accuracy of the laboratory data
 that is generated during this study is a measure of the closeness of the analytical results
 obtained by a method to the 'true' value. Accuracy is assessed by reference to the analytical
 results of laboratory control samples, laboratory spikes and analyses against reference
 standards.
- Representativeness expresses the degree to which sampled data accurately and precisely represents the media present on site or an environmental condition. Representativeness is achieved by collecting samples on a representative basis across the site, and by using an adequate number of sample locations to characterise the site to the required accuracy.
- Comparability expresses the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in techniques used to collect samples; ensuring analysing laboratories use consistent analysis techniques and reporting methods.
- Completeness is defined as the percentage of measurements made which are judged to be valid measurements. The completeness goal is to obtain a sufficient amount of usable data from a data collection activity.

Analytical data reported by ALS was judged to have met the essential criteria for data quality for analysis of the samples. The data assessment examined laboratory results, COC documentation, and laboratory QA/QC, and is provided in Attachments 4 and 5. Evaluation of QA/QC parameters for both soil sampling and analysis are summarised in Table 5-1.

5.1.1 Duplicate Results

One field duplicate sample was taken to assess the homogeneity of the sample matrix. In order to compare results of the duplicate sample to the original sample (A4-DISC6-SURF and A4-DISC7-SURF), the Relative Percent Difference (RPD) is calculated for each analyte that had results above the LOR. The RPD equals:

RPD (%) =
$$100 * \frac{|X_A - X_B|}{\frac{1}{2}(X_A + X_B)}$$

where X_{A} and X_{B} are the analyte levels of original sample A and duplicate sample B, respectively.

The accuracy of RPD values for field duplicate samples are compared to a criteria of <50% RPD. No exceedance of the RPD was found.

Table 7-4: Soil Results for OCPs and OPPs Against Residential NEPM 2013 Guidelines (Units mg/kg unless otherwise specified)

Contamination Report Addendum to Stage 1 Preliminary Site Investigation

Bethel Mar Thoma Church, Sydney Inc. & Fairfield City Council

SAC	HCB	Heptachlor	Chlordane	Endrin	Endosulfan	Methoxychlor	Sum of DDD + DDE + DDT	Sum of Aldrin + Dieldrin	Chlorpyrifos
HILA	.10	9	. 50	10	270	300	240	9	160
HIL A Market Gardens (#)	•	10	20		-	-	200	0.0	
LOR	0.05	0.05	0.05	0.05	0.05	0.2	0.05	0.05	0.05
Sample event ESP 2012									
54	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	< 0.05	< 0.05	1
Sample event ESP 2016									
5-1	< 0.05	< 0.05	< 0.1	< 0.05	< 0.1	< 0.2	< 0.05	< 0.1	< 0.2
5-2	< 0.05	< 0.05	< 0.1	< 0.05	< 0.1	< 0.2	0.08	< 0.1	ŧ
8-3	ı	ī	t	1	\$	ž	1	•	ī
Sample event BE 2017									
A4-DISC1-SURF	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	< 0.05	< 0.05	< 0.05
A4-DISC2-SURF	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	< 0.05	< 0.05	< 0.05
A4-DISC3-SURF	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	< 0.05	< 0.05	< 0.05
A4-DISC4-SURF	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	0.06	< 0.05	< 0.05
A4-DISC5-SURF	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	0.07	< 0.05	< 0.05
A4-DISC6-SURF	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	< 0.05	< 0.05	< 0.05
A4-DISC7-SURF	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	< 0.05	< 0.05	< 0.05
A4-DISC8-SURF	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	< 0.05	< 0.05	< 0.05
A4-DISC9-SURF	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	0.09	< 0.05	< 0.05
A4-DISC10-SURF	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.2	< 0.05	< 0.05	< 0.05

(#) NSW DEC 2005 Guidelines for assessing former Orchards and Market Gardens (###) Clay, 0 to < 1m (###) Clay, 0 to < 1m (###) Urban residential, aged contamination, 7 pH, CEC 15 cmolc/kg, low traffic

8. CONCLUSION AND RECOMMENDATIONS

The purpose of this study was to verify the presence of contaminants in the soil on site, within the identified areas of potential concern, and to determine whether the levels of site contamination pose an unacceptable risk to human health and/or the environment for the proposed use of the land.

Soil samples were collected from the subject site and tested by a NATA accredited laboratory for contaminants of concern in order to enable the assessment of potential contamination in soil. The analytical results were compared to the adopted site assessment criteria, extrapolated from NEPC (2013) and specific to the proposed land uses and physiochemical properties of the soil on site. No contamination was detected in relation to the following tested contaminants: metals, PCB, OC and OP pesticides, phenols, PAHs, TRHs and BTEX. However, asbestos contamination in soil was detected within the stockpile present on site.

When combined, the analytical results presented by ESP and Benbow Environmental indicate that the site *can* be suitable for its proposed future use following clean-up of asbestos contamination detected in the stockpile within Area 4.

A remediation action plan must be prepared to guide the removal of asbestos contamination. Benbow Environmental recommends that the whole stockpile is sent for disposal to an appropriate waste facility. Following the remediation works (i.e. removal of asbestos contaminated stockpiles), a validation programme would be undertaken to ensure that surface soil in the affected portion of the site (Area 4) is free from any form of asbestos potentially released during the removal of stockpile material. Soils in Areas 1, 2, 3, 5 and 6 do not require remediation/validation for presence of any chemicals of concern.

Therefore, upon removal of the stockpile and validation of Area 4, the site would be suitable for the proposed use.

This concludes the report.

Rosica Ill. Roy

Jessica M Roy Environmental Scientist Lauren O'Brien

Environmental Intern

R T Benbow
Principal Consultant

a 7Be low

9. LIMITATIONS

Our services for this project are carried out in accordance with our current professional standards for site assessment investigations. No guarantees are either expressed or implied.

This report has been prepared solely for the use of Bethel Mar Thoma Church, Sydney Inc. & Fairfield City Council, as per our agreement for providing environmental services. Only Bethel Mar Thoma Church, Sydney Inc. & Fairfield City Council are entitled to rely upon the findings in the report within the scope of work described in this report. Otherwise, no responsibility is accepted for the use of any part of the report by another in any other context or for any other purpose.

Although all due care has been taken in the preparation of this study, no warranty is given, nor liability accepted (except that otherwise required by law) in relation to any of the information contained within this document. We accept no responsibility for the accuracy of any data or information provided to us by Bethel Mar Thoma Church, Sydney Inc. & Fairfield City Council for the purposes of preparing this report.

Any opinions and judgements expressed herein, which are based on our understanding and interpretation of current regulatory standards, should not be construed as legal advice.

10. REFERENCES

DEC NSW (Department of Environment and Conservation New South Wales), 2005. *Guidelines for Assessing Former Orchards and Market Gardens*. Department of Environment and Conservation NSW, Sydney.

DEC NSW (Department of Environment and Conservation New South Wales), 2006. Guidelines for the NSW Site Auditor Scheme (2^{nd} Edition). Department of Environment and Conservation NSW, Sydney.

NEPC (National Environment Protection Council), 2013. *National Environmental Protection* (Assessment of Site Contamination) Measure (NEPM) (NEPC, 1999) amended 2013. Office of Parliamentary Counsel, Canberra.

New South Wales Government, 2017. Contaminated Land Management (CLM) Act, 1997. Accessed on September 2017 at https://www.legislation.nsw.gov.au/#/view/act/1997/140.

NSW EPA (New South Wales Environment Protection Authority), 1995. Sampling Design Guidelines. NSW Environment Protection Authority, Sydney.

OEH (Office of Environment and Heritage), 2011. *Guidelines for Consultants Reporting on Contaminated Sites*. State of NSW and Office of Environment and Heritage, Sydney.

Standards Australia, 2005. Australian Standards: AS 4482.1-2005: Guide to the investigation and sampling of sites with potentially contaminated soil Non-volatile and semi-volatile compounds. Standards Australia, Sydney.

Client:

Project:

BOREHOLE LOG

Borehole Nos: A1-Comp-Surf A5-Comp-Surf

Benbow

171144 Bethel Mar Thoma Church Job Number: Contamination Report Addendum Contractor: N/A 1650 The Horsley Drive, Horsley Logged by: Location: JR

Park

Borehole Diam.: 150 mm Borehole Depth: 0.2 m

Commenced: 22.08.2017 Completed: 22.08.2017

CO111111	enceu.	22,00.2017	completed.	22.00.20	11/			
Depth	Visual	GEOLOGICAL DESCRIPTION Material Type: USCS Group, Colour, Particle Size, Moisture Content, Consistency (Geological Origin) PID (ppm)	COMMENTS (Field Rank, Odour, Visual Blow Count, Other)	PID (ppm)	Graphic Log	Method	Water	Monitor Well Details
		GROUND SURFACE Sandy clay, very dry, light brown, firm consistency with gravel inclusions Borehole terminated at 0.2 m BGL				НА		

N	1e	th	od		

SV – Solid Flight Auger with V-bit ST – Solid Flight Auger with TC-bit

HT – Hollow Flight Auger with TC-bit

DC - Diamond Core

R - Roller/Tricore VC – Vibra-core

AH – Air Hammer W – Washbone

M - Mud Drilling

HA – Hand Auger TP - Test Pit-excavator bucket

Sample Type

SP - Split Spoon

A – Auger (disturbed)

HA – Hand Auger

CY - Cyclone

SC – Scoop

Benbow

BOREHOLE LOG

Borehole Nos:
A4-DISC1-SURF A4-DISC6-SURF

A4-DISC2-SURF A4-DISC3-SURF A4-DISC3-SURF A4-DISC4-SURF A4-DISC9-SURF

A4-DISC5-SURF A4-DISC10-SURF

Client:

Bethel Mar Thoma Church

Job Number:

171144

Project:

Contamination Report Addendum

Contractor:

N/A

Location:

1650 The Horsley Drive, Horsley Logged by:

JR

Park

Borehole Diam.:

150 mm

Borehole Depth:

0.15 m

Commenced:

22.08.2017

Completed:

22.08.2017

Comm	encea:	22.08.2017	Completed. 2	.2.00.20	1.7			
Depth	Visual	GEOLOGICAL DESCRIPTION Material Type: USCS Group, Colour, Particle Size, Moisture Content, Consistency (Geological Origin) PID (ppm)	COMMENTS (Field Rank, Odour, Visual Blow Count, Other)	PID (ppm)	Graphic Log	Method	Water	Monitor Well Details
		Origin) PID (ppm) GROUND SURFACE Gravelly clay, dry brown colour, firm consistency with some gravel inclusions Borehole terminated at 0.15 m BGL	No obvious odour			НА		

Method

SV – Solid Flight Auger with V-bit

ST – Solid Flight Auger with TC-bit

HT – Hollow Flight Auger with TC-bit

DC - Diamond Core

R - Roller/Tricore

VC - Vibra-core

AH – Air Hammer

W – Washbone

M - Mud Drilling

HA – Hand Auger

TP - Test Pit-excavator

bucket

Sample Type

SP – Split Spoon

A – Auger (disturbed)

HA – Hand Auger

CY - Cyclone

SC - Scoop

BE

BOREHOLE LOG

Borehole Nos:

Stock.1

Benbow

Client:

Bethel Mar Thoma Church

Job Number: Contractor: 171144

Project:

Contamination Report Addendum

N/A

Location:

1650 The Horsley Drive, Horsley Logged by:

JR

Park

Borehole Diam.:

150 mm

Borehole Depth:

0.5 m

Commenced: 22.08.2017

Completed:

22.08.2017

E	CONTRACTOR OF THE PARTY OF THE		· · · · · · · · · · · · · · · · · · ·					
Depth	Visual	GEOLOGICAL DESCRIPTION Material Type: USCS Group, Colour, Particle Size, Moisture Content, Consistency (Geological Origin) PID (ppm)	COMMENTS (Field Rank, Odour, Visual Blow Count, Other)	PID (ppm)	Graphic Log	Method	Water	Monitor Well Details
0.5		GROUND SURFACE Sandy clay, wet, brown colour, with foreign material inclusions (e.g. glass fragments) Borehole terminated at 0.5 mBGL	No obvious odour			АН		
-								
2.0								
 								
-								
_								
-								
3.0							l	

Method

SV – Solid Flight Auger with V-bit

ST – Solid Flight Auger with TC-bit

HT – Hollow Flight Auger with TC-bit

DC - Diamond Core

R - Roller/Tricore

VC – Vibra-core

AH – Air Hammer

W – Washbone

M – Mud Drilling

HA – Hand Auger TP – Test Pit-excavator

bucket

Sample Type

SP - Split Spoon

A – Auger (disturbed)

HA – Hand Auger

CY - Cyclone

SC – Scoop

BOREHOLE LOG

Borehole Nos: Stock.2

Benbow

Client:

Bethel Mar Thoma Church

Job Number:

171144

Project:

Contamination Report Addendum Contractor:

actor: N

N/A

Location:

1650 The Horsley Drive, Horsley Logged by:

v:

JR

Park

Borehole Diam.: Commenced: 150 mm

Borehole Depth:

0.5 m

22.08.2017

Completed:

. 22.08.2017

1								
Depth	Visual	GEOLOGICAL DESCRIPTION Material Type: USCS Group, Colour, Particle Size, Moisture Content, Consistency (Geological Origin) PID (ppm)	COMMENTS (Field Rank, Odour, Visual Blow Count, Other)	PID (ppm)	Graphic Log	Method	Water	Monitor Well Details
0.5	٠	GROUND SURFACE Sandy clay, wet, brown colour, with foreign material inclusions (e.g. fragments of cement sheeting/ potential ACM). Borehole terminated at 0.5 mBGL				НА		
1.0								
					1			
<u></u>								
	1							
_	l							
\vdash								
—	l				İ			
<u></u>								
2.0	l							
—								l
		N. C.						
								1
			Marino Ma					
<u></u>								
<u> </u>					l			
3.0				1		1		

Method

SV – Solid Flight Auger with V-bit ST – Solid Flight Auger with TC-bit

HT – Hollow Flight Auger with TC-bit

DC – Diamond Core R – Roller/Tricore VC – Vibra-core AH – Air Hammer

W – Washbone M – Mud Drilling HA – Hand Auger

TP - Test Pit-excavator bucket

Sample Type

SP – Split Spoon

A – Auger (disturbed)

HA – Hand Auger

CY - Cyclone

cavator SC - Scoop

Borehole Nos: **BOREHOLE LOG** Stock.3 Benbow Client: Bethel Mar Thoma Church 171144 Job Number: Project: Contamination Report Addendum Contractor: N/A Location: 1650 The Horsley Drive, Horsley Logged by: JR Park Borehole Diam.: 150 mm Borehole Depth: 0.5 m Commenced: 22.08.2017 Completed: 22.08.2017 GEOLOGICAL DESCRIPTION COMMENTS Monitor Well Details Graphic Log PID (ppm) Method Material Type: USCS Group, (Field Rank, Odour, Depth Water Colour, Particle Size, Moisture Visual Blow Count, Content, Consistency (Geological Other) Origin) PID (ppm) GROUND SURFACE HA 0.0 Sandy clay, wet, brown colour, with No obvious odour foreign material inclusions (e.g. pieces of bricks and larger rocks) Borehole terminated at 0.5 mBGL Sample Type SV – Solid Flight Auger with V-bit AH - Air Hammer SP – Split Spoon ST - Solid Flight Auger with TC-bit W - Washbone A - Auger (disturbed)

M – Mud Drilling

HA - Hand Auger

bucket

TP - Test Pit-excavator

HA - Hand Auger

CY - Cyclone

SC-Scoop

HT – Hollow Flight Auger with TC-bit

DC - Diamond Core

R - Roller/Tricore

VC - Vibra-core

Attachment 3: Chain of Custody Forms